

- Managerial Decision Makers are Knowledge Workers
- They Use Knowledge in Decision Making
- Issue: Accessibility to Knowledge
- Knowledge-Based Decision Support Through Applied Artificial Intelligence Tools

6.1 Opening Vignette: A Knowledge-based DSS in a Chinese Chemical Plant

- The Problem
 - Dalian Dyestuff plant
 - Managers determined own production plans
- The Solution
 - DSS with a knowledge-base component

Subsystems

- Production Planning
- Accounting and Cost Control
- Financing and Budgeting
- Inventory and Material Management Control
- Information Services
- LP-based production planning model in model base
- Two Expert Systems (ES) to
 - Plan monthly production and
 - Analyze working capital

The Expert System

Generates a proposed plan

Models the working capital

ES Advantages

- Combines quantitative and qualitative analysis
- Provides flexibility and adaptability
- Involved decision makers
- Allows better and more efficient decisions
- Increased profit by more than \$1 million / year (about a 10% increase)
- Allows users to express preferences and expertise
- Improves service to customers
- Improved the competitive position of the plant Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Copyright 1998, Prentice Hall, Upper Saddle River, NJ

6.2 Artificial Intelligence (AI)

Al Concepts and Definitions

- Encompasses Many Definitions
- Al Involves Studying Human
 Thought Processes (to Understand What Intelligence Is)
- Al Deals with Representing Thought Processes on Machines

Artificial Intelligence

- Artificial intelligence is behavior by a machine that, if performed by a human being, would be called intelligent (well-publicized)
- "Artificial Intelligence is the study of how to make computers do things at which, at the moment, people are better" (Rich and Knight [1991])
- Al is basically a theory of how the human mind works (Mark Fox)

Objectives of Artificial Intelligence

(Winston and Prendergast [1984])

- Make machines smarter (primary goal)
- Understand what intelligence is (Nobel Laureate purpose)
- Make machines more useful (entrepreneurial purpose)

Signs of Intelligence

- Learn or understand from experience
- Make sense out of ambiguous or contradictory messages
- Respond quickly and successfully to new situations
- Use reasoning to solve problems (Continued on next page)

Signs of Intelligence (cont'd)Deal with perplexing situations

- Understand and Infer in ordinary, rational ways
- Apply knowledge to manipulate the environment
- Think and reason
- Recognize the relative importance of different elements in a situation

Turing Test for Intelligence

A computer can be considered to be smart only when a human interviewer, "conversing" with both an unseen human being and an unseen computer, could not determine which is which

Symbolic Processing

Use Symbols to Represent Problem Concepts

 Apply Various Strategies and Rules to Manipulate these Concepts

Al: Represents Knowledge as Sets of Symbols

A *symbol* is a string of characters that stands for some real-world concept

Examples

- Product
- Defendant
- **8.0**
- Chocolate

Symbol Structures (Relationships)

- (DEFECTIVE product)
- (LEASED-BY product defendant)
- (EQUAL (LIABILITY defendant) 0.8)
- tastes_good (chocolate).

 Al Programs Manipulate Symbols to Solve Problems

Symbols and Symbol Structures
 Form Knowledge Representation

 Artificial intelligence is the Branch of Computer Science Dealing Primarily with Symbolic, Nonalgorithmic Methods of Problem Solving

Characteristics of Artificial Intelligence

- Numeric versus Symbolic
- Algorithmic versus Nonalgorithmic

Heuristic Methods for Processing Information

- Search
- Inferencing

Pattern Matching

Attempt to describe objects, events, or processes in terms of their qualitative features and logical and computational relationships

6.3 Artificial Intelligence versus Natural Intelligence

- Al is more permanent
- Al offers ease of duplication and dissemination
- Al can be less expensive
- Al is consistent and thorough
- Al can be documented
- Al can execute certain tasks much faster than a human can
- Al can perform certain tasks better than many or even most people
 Decision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson

Copyright 1998, Prentice Hall, Upper Saddle River, NJ

Natural Intelligence Advantages over Al

- Natural intelligence is creative
- People use sensory experience directly
- Can use a wide context of experience in different situations

AI - Very Narrow Focus

Information Processing

- Computers can collect and process information efficiently
- People instinctively
 - Recognize relationships between things
 - Sense qualities
 - Spot patterns that explain relationships

BUT, Al technologies can provide significant improvement in productivity and quality

6.4 Knowledge in Artificial Intelligence

Knowledge encompasses the implicit and explicit restrictions placed upon objects (entities), operations, and relationships along with general and specific heuristics and inference procedures involved in the situation being modeled

Of data, information, and knowledge, KNOWLEDGE is most abstract and in the smallest quantity

Uses of Knowledge

- Knowledge consists of facts, concepts, theories, heuristic methods, procedures, and relationships
- Knowledge is also information organized and analyzed for understanding and applicable to problem solving or decision making
- Knowledge base the collection of knowledge related to a problem (or opportunity) used in an Al system
- Typically limited in some specific, usually narrow, subject area or domain
- The *narrow domain* of knowledge, and that an Al system must involve some *qualitative aspects* of decision making (*critical* for Al application succession Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson Succession Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson

Knowledge Bases

- Search the Knowledge Base for Relevant Facts and Relationships
- Reach One or More Alternative Solutions to a Problem
- Augments the User (Typically a Novice)

6.5 How Artificial Intelligence Differs from Conventional Computing

Conventional Computing

- Based on an Algorithm (Step-by-Step Procedure)
- Mathematical Formula or Sequential Procedure
- Converted into a Computer Program
- Uses Data (Numbers, Letters, Words)
- Limited to Very <u>Structured</u>, <u>Quantitative</u> Applications (Table 6.1)

Table 6.1: How Conventional Computers Process Data

- Calculate
- Perform Logic
- Store
- Retrieve
- Translate
- Sort
- Edit
- Make Structured Decisions
- Monitor
- Control

Al Computing

- Based on symbolic representation and manipulation
- A symbol is a letter, word, or number represents objects, processes, and their relationships
- Objects can be people, things, ideas, concepts, events, or statements of fact
- Create a symbolic knowledge base

Al Computing (cont'd)

- Uses various processes to manipulate the symbols to generate advice or a recommendation
- Al reasons or infers with the knowledge base by search and pattern matching
- Hunts for answers (Algorithms often used in search)

Al Computing (cont'd)

Caution: Al is NOT magic

Al is a <u>unique</u> approach to programming computers

(Table 6.2)

Table 6.2: Artificial Intelligence vs. Conventional Programming

Dimension	Artificial Intelligence	Conventional Programming
Processing	Primarily Symbolic	Primarily Algorithmic
Nature of Input	Can be Incomplete	Must be Complete
Search	Heuristic (Mostly)	Algorithms
Explanation	Provided	Usually Not Provided
Major Interest	Knowledge	Data, Information
Structure	Separation of Control	Control Integrated with
	from Knowledge	Information (Data)
Nature of Output	Can be Incomplete	Must be Correct
Maintenance and	Easy Because of	Usually Difficult
Update	Modularity	
Hardware	Mainly Workstations and	All Types
	Personal Computers	
Reasoning	Limited, but Improving	None
Capability		

6.6 Does a Computer Really Think?

- WHY?
- WHY NOT?

Dreyfus and Dreyfus [1988] say NO!

The Human Mind is Very Complex

- Models of how we think
- Methods to apply our intelligence
- Can make computers easier to use
- Can make more knowledge available to the masses
- Simulate parts of the human mind

6.7 The Artificial Intelligence Field

- Involves Many Different Sciences and Technologies
 - Linguistics
 - Psychology
 - Philosophy
 - Computer Science
 - Electrical Engineering
 - Hardware and Software

(More)

- Mechanics
- Hydraulics
- Physics
- Optics
- Others

Commercial, Government and Military Organizations Involved

Lately

- Management and Organization Theory
- Chemistry
- Physics
- Statistics
- Mathematics
- Management Science
- Management Information Systems

Artificial Intelligence

- Al is a Science and a Technology
- Growing Commercial Technologies

Major Al Areas

- Expert Systems
- Natural Language Processing
- Speech Understanding
- Fuzzy Logic
- Robotics and Sensory Systems
- Computer Vision and Scene Recognition
- Intelligent Computer-Aided Instruction
- Machine Learning (Neural Computing) (Figure 6.3)

Expert Systems

- Attempt to Imitate Expert Reasoning Processes and Knowledge in Solving Specific Problems
- Most Popular Applied Al Technology
 - Enhance Productivity
 - Augment Work Forces
- Narrow Problem-Solving Areas or Tasks

Human Expert Characteristics

- Solve problems quickly and accurately
- Explain what (and how) they do
- Judge own conclusions
- Know when stumped
- Communicate with other experts
- Learn
- Transfer knowledge
- Use tools to support decisions
- Knowledge is a major resource
- Important to capture knowledge from a few experts
- Experts become unavailable -> knowledge not available
- Better than books and manuals

Expert Systems

Provide Direct Application of Expertise

- Expert Systems Do Not Replace Experts, But
 - Makes their Knowledge and Experience
 More Widely Available
 - Permits Non Experts to Work Better

Expert Systems Software Development Packages

- Resolve (was EXSYS)
- K-Vision
- KnowledgePro

Natural Language Processing

- Can Communicate with the Computer in a Native Language
- Conversational Interface
- Limited Success

Natural Language Processing (NLP)

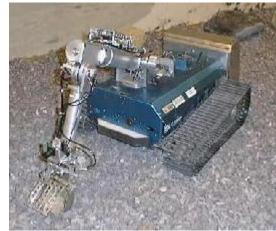
- Natural Language Understanding
- Natural Language Generation

Speech (Voice) Understanding

Recognition and Understanding by a Computer of Spoken Language

Robotics and Sensory Systems

- Sensory Systems
 - Vision Systems
 - Tactile Systems
 - Signal Processing Systems


Plus AI = Robotics

Robot

An Electromechanical Device that Can be Programmed to Perform Manual

Dante II: Robotics Institute, Carnegie Mellon University: http://www.frc.ri.cmu.edu

Mars Rover: The AI Laboratory at MIT: http://www.ai.mit.edu

Robot

"a reprogrammable multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks."

Photo: Wheelesly, a Robotic Wheelchair: The AI Laboratory at MIT: http://www.ai.mit.edu

Are Robots Part of AI?

Not Always!

Computer Vision and Scene Recognition

Cheap Vision Machine: The AI Laboratory at MIT: http://www.ai.mit.edu

Robotics and Computer Vision Web Sites

- Carnegie Mellon University Robotics Institute: http://www.frc.ri.cmu.edu
- The AI Laboratory at MIT: http://www.ai.mit.edu
- Jet Propulsion Lab (NASA): http://robotics.jpl.nasa.gov
- List at the JPL: http://robotics.jpl.nasa.gov/people/welch/other-robotics.html

Intelligent Computer-Aided Instruction (ICAI)

Machines that Can Tutor Humans

Neural Computing

- Mathematical Model of the Way a Brain Functions
- Other Applications
 - Automatic Programming
 - Summarizing News
 - Language Translation
 - Fuzzy Logic
 - Genetic Algorithms
 - Intelligent Agents

6.8 Types of Knowledgebased Decision Support

- Knowledge component extends the capabilities of computers well beyond data-based and model-based DSS
- Possible support for
 - Qualitative aspects of the decision process
 - Model management in a multiple model DSS
 - Uncertainty analysis in applying AI tools
 - The user interface (NLP and Voice Technology)
 - Other

6.9 Intelligent Decision Support Systems

- Active (Symbiotic) DSS Needed for
 - Understanding the domain
 - Problem formulation
 - Relating a problem to a solver
 - Interpreting results
 - Explaining results and decisions

Mili [1990]

Need for an Intelligent Component(s) in the DSS

Self-Evolving DSS - Extra Capabilities

- Dynamic menu
- Dynamic user interface
- Intelligent model base management system

Purposes of Self-Evolving DSS

- Increasing the flexibility of the DSS
- Making the system more user friendly
- Enhancing control over the organization's information resource
- Encouraging system sharing

Structure of Self-Evolving DSS (Figure 6.4)

Major Components

- Data management, model management, and a user interface
- Usage record
- The user interface elements
- The central control mechanism

Table 6.3: Problem Management

Problem Management Stage	<u>Functional</u> <u>Requirements</u>	Architectural Support
Problem finding	Perceptual filters, knowledge management	Flexible knowledge management, intelligent filters
Problem representation	Model and pattern management, suspension of judgment	Flexible dialog and knowledge management, reason maintenance system, pattern search strategies
Information surveillance	Knowledge and model management	Demons, intelligent lenses, scanners, evaluators, interpreters
Solution generation	Knowledge management, idea generation	Idea and solution model management, heuristic and analytic drivers
Solution evaluation	Meta-level dialog and knowledge management	Flexible knowledge management, analytic and symbolic processors

- Al Research and Development
- Subfields Evolve and Improve
- New Software Techniques
- Improved Software Development Tools
- Improvement in ALL Decision Making Areas

Hardware Advances

- Special search, pattern-matching, and symbolic processing chips
- New parallel computing and neural computing architectures
- Increased integration AI with other CBIS

- Natural language interfaces common
- Intelligent databases economical
- Internet tools with intelligent agents and knowledge components
- Programs with knowledge-based subsystems for performance improvements
- Expert systems will become widely available

Now

- Relatively few stand-alone Al application products (except ES)
- Combinations of Al software and conventional algorithmic software / DSS

Al Transparent in Commercial Products

- Anti-lock Braking Systems
- Video CAMcorders
- Kitchen Appliances
 - Toasters
 - Stoves
- Data Mining Software
- Help Desk Software

Summary

- Artificial intelligence is an interdisciplinary field
- The primary objective of Al is to build computer systems that perform intelligent tasks
- The major characteristics of Al are symbolic processing, heuristics and inferencing

- Al has several major advantages over people
- Natural (human) intelligence has advantages over AI
- Knowledge is the key concept of Al
- Knowledge base
- Conventional computing vs. Al

- Digital computers are algorithmic but can be programmed for symbolic manipulation
- Techniques of reasoning: search and pattern matching
- Al computers may not think, but can be valuable
- Major application areas of Al

- Expert systems attempt to imitate experts
- Effective expert systems are applied to a narrow knowledge domain and include qualitative factors
- Natural language processing
- Speech understanding
- Intelligent robots

- Computer vision
- Fuzzy logic
- Genetic algorithms
- Intelligent agents
- Intelligent Computer-Aided Instruction
- Al technologies can be integrated together and with other CBIS

- Intelligent DSS: Active
- Intelligence is added to DSS by embedding knowledge bases
- Intelligence needed in problem management
- Active, symbiotic, and self-evolving DSS are different configurations of intelligent DSS

Questions for the Opening Vignette

- Justify the need for a DSS
- Describe the role of the ES. Why was such a component needed?
- Review the role of the managersusers in this case
- What unique aspects in this case are related to the Chinese environment?
- What managerial lessons regarding DSS can be learned from this

Exercise

5. Commander Data, a member of the Enterprise starship crew was declared, legally, to be a sentient being, a culture of one, entitled to full rights as a citizen of the United Federation of Planets.

Answer the Following

- Describe the consequences of such a legal decision in today's culture (recognizing that an artificial life form has equal stature to a human being).
- Do you think that such a court ruling will ever be possible? Why or why not?
- Should a sentient, artificial life form be entitled to "rights" in the human sense? Why or why not?

 Decision Support Systems and Intelligent Systems, I fraim Turban and Ja

Copyright 1998, Prentice Hall, Upper Saddle River, NJ

Group Exercise

1. Make a peanut butter and jelly sandwich in class.

Debates

- Do chess playing computer systems exhibit intelligence? Why or why not?
- Justify the position that computers cannot think. Then prepare arguments that show the opposite.

- Bourbaki [1990] describes Searle's argument against the use of the Turing Test. Summarize all the important issues in this debate.
- The Soul: Proponents of Al claim that we cannot ever have machines that truly think because they cannot, by definition, have a soul. Supporters claim a soul is unnecessary. They cite the fact that originally humanity set out to create an artificial bird for flight. An airplane is not a bird, but yet it functionally acts as one. Debate ■ecision Support Systems and Intelligent Systems, Efraim Turban and Jay E. Aronson

Wright 9 8 Prentice Hall, Upper Saddle River, NJ

APPENDIX 6-A: Human Problem Solving--An Information Processing Approach (The Newell-Simon Model)

- Problem solving can be understood as information processing
- Based on a cognitive approach that uses a qualitative description of the ways in which people are similar, and of the manner in which people think

- Perceptual subsystem
- Cognitive subsystem
- Motor subsystem
- External memory (Figure 6-A.1)

Perceptual Subsystem

External stimuli - inputs for human information processing

Cognitive Subsystem

- Selects appropriate information from sensory buffers and transfers it to the short-term memory
- Works in cycles
- Cognitive Subsystem Parts
 - Elementary processor
 - Short-term memory
 - Interpreter

- Complex tasks more elaborate processing
- Cognitive processor draws on longterm memory
 - Long-term memory large number of stored symbols with a complex indexing system

Simple Model of LTM

Related symbols are associated with one another

Complex Model 1 of LTM

- Symbols are organized into temporal scripts
- Memory consists of clusters of symbols called chunks
- Supports the decision-making process with external memory
- The long-term memory has essentially unlimited capacity
- The short-term memory is quite small

Major Limitations of Humans

The human operates in serial

Motor Subsystem

 After scanning and searching memories, the processor sends information to the *motor subsystem*. Motor processors initiate actions of muscles and other internal human systems

Results in some observable activity