Systems Analysis and Design with UML Version 2.0

Chapter 4 Project Management

Alan Dennis, Barbara Wixom, and David Tegarden

John Wiley & Sons, Inc.

Copyright © 2005 John Wiley & Sons, Inc.

- All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the copyright owner is unlawful.
- Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.
- The purchaser may make back-up copies for his/her own use only and not for redistribution or resale.
- The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.

Project Management

Chapter 4

Objectives

- Become familiar with estimation.
- Be able to create a project workplan.
- Understand why project teams use timeboxing.
- Become familiar with how to staff a project.
- Understand how computer-aided software engineering,

improve the efficiency of a project.

Understand how to reduce risk on a project.

Key Definitions

- Project management is the process of planning and controlling the development of a system within a specified timeframe at a minimum cost with the right functionality.
- A project manager has the primary responsibility for managing the hundreds of tasks and roles that need to be carefully coordinated.

Estimating a Project Based on Industry Information

	Planning	Analysis	Design	Implementation
Industry Standard For Web Applications	15% s	20%	35%	30%
Time Required in Person Months	4	5.33	9.33	8

Function Points

Estimate System Size

A function point is a measure of program size that is based on the system's number and complexity of inputs, outputs, queries, files, and program interfaces

Estimate effort required

Person Months

Estimate time required

Months to complete

Time Estimation Using a More Complex Approach

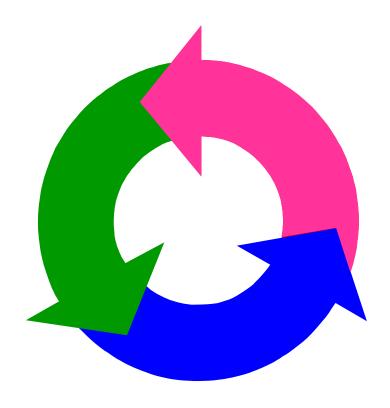
Estimate system size (function points and lines of code)

Estimate effort required (person-months)

Estimate time required (months)

Getting the Right Numbers for Estimation

- Prior projects
 - Past experience
 - Industry standards
- Detailed analysis



Estimation Trade-offs

Size

- Function points
- Lines of code
- Effort
 - Person-months
 - People available
- Time
 - Months

Calculate Function Points

- List major elements of system
- Determine total number of each element
- Specify complexity index of each component (low, med., high)
- Total index multiplied by number of components (TUFP)

Function Point Estimation

-- Step One

Complexity					
Description	Low	Medium	High	Total	
Inputs	x 3	x 4	x 6		
Outputs	x 4	x 5	x 7		
Queries	x 3	x 4	x 6		
Files	x 7	x 10	x 15		
Program Interfaces	x 5	x 7	x 10		
TOTAL UNADJUSTED FUNCTION POINTS					

TUPF Example

Description	Total Number	Low	Medium	High	Total
Inputs	<u>6</u>	<u>3</u> ×3	<u>2</u> ×4	<u>1</u> ×6	<u>23</u>
Outputs	<u>19</u>	<u>4</u> ×4	<u>10</u> ×5	<u>5</u> ×7	<u>101</u>
Queries	<u>10</u>	<u>7</u> ×3	<u>0</u> ×4	<u>3</u> ×6	39
Files	<u>15</u>	<u>0</u> ×7	<u>15</u> × 10	<u>0</u> × 15	<u>150</u>
Program Interfaces	3	<u>1</u> ×5	<u>0</u> ×7	<u>2</u> × 10	<u>25</u>
Total Unadjusted Function Points (TUFP):				338 /	

Adjusted Processing Complexity -- Step 2

Data communications	<u>3</u>
Heavy use configuration	<u>o</u>
Transaction rate	<u>o</u>
End-user efficiency	<u>o</u>
Complex processing	<u>o</u>
Installation ease	<u>o</u>
Multiple sites	<u>o</u>
Performance	<u>o</u>
Distributed functions	<u>2</u>
Online data entry	<u>2</u>
Online update	<u>o</u>
Reusability	<u>o</u>
Operational ease	<u>o</u>
Extensibility	<u>o</u>
Total Processing Complexity (PC):	7

Function Points Estimation

-- Step Four

$$=$$
 .065 + (0.01 * Project Complexity)

Total Adjusted Function Points

=

Adjusted Project Complexity * TUFP ---

Function Point Estimation

Converting Function Points to Lines of Code

Language	LOC/Function Code Point
C COBOL JAVA C++ Turbo Pascal Visual Basic PowerBuilder HTML Packages (e.g., Access, Excel)	130 110 55 50 50 30 15 15 10-40

Source: Capers Jones, Software Productivity Research

Final Step

- Multiply function points
- Approximate lines of code per function point in the chosen language
- If you chose C, then 243 function Points times 130 lines of code = 31,590 total lines of code

Estimating Effort

- Function of size and production rate
- COCOMO model
 - converts a lines-of-code estimate into a person-month estimate
 - For moderate-size projects multiply thousands of lines of code by 1.4 to get the number of people to assign to the project

COCOMO Estimation Calculation

Effort (in Person-Months) =

1.4 * thousands-oflines-of-code

Example:

If LOC = 2000 Then... Effort = (1.4 * 2000) = 28 Person Months

Estimating Schedule Time

Rule of thumb for estimation

Schedule Time (months)

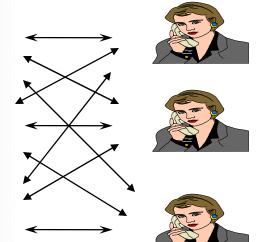
_

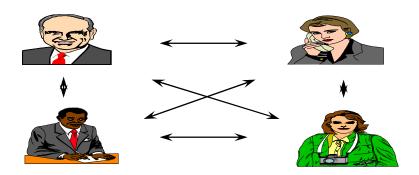
 $3.0 * person-months^{1/3}$

Staffing Attributes

- Staffing levels will change over a project's lifetime
- Adding staff may add more overhead than additional labor
- Using teams of 8-10 reporting in a hierarchical structure can reduce complexity

Increasing Complexity with Larger Teams





CREATING THE WORK PLAN

Developing a WorkPlan

- Identify tasks in the project
- Estimate task length
- Determine task dependencies
- Specify to whom task will be assigned
- List deliverables

A Workplan Example

Work Plan Information	Example
Name of task Start date Completion date Person assigned Deliverable(s) Completion status Priority Resources needed Estimated time Actual time	Perform economic feasibility Jan 05, 2001 Jan 19, 2001 Mary Smith, sponsor Cost-benefit analysis Open High Spreadsheet 16 hours 14.5 hours

Identifying Tasks

- Top-down approach
 - Identify highest level tasks as phases in the project
 - Break them into increasingly smaller units
- Methodology
 - Using standard list of tasks
 - Similar previous projects

Top Down Task Identification

Phases

Phases with high level steps

Work Plan Deliverables Estimated Assigned hours To

*
*
*
*
*
*

Work Breakdown Structure

- Specify high level tasks
- Break down each step into smaller tasks and number them in a hierarchical fashion
- WBS can be done in two ways
 - SDLC phase
 - Product

WBS Problems

- They tend to be specific to the design of the information system being developed
- Too many levels of detail too early on in the SDLC for large projects or too few for small projects.
- Since they are project specific, they are very difficult to compare across projects.

Evolutionary WBS

- ->
- organize in a standard manner across all projects
- create in an incremental and iterative manner
 - first evolutionary WBS done with initial aspects of the project
 - Later on more details are added to the WBS.
- Comparable to earlier projects based on cost and schedule estimation

Project WorkPlan

Task Number	Task Name	Duration (in weeks)	Dependency	Status
1	Identify vendors	2		Complete
2	Review training materials	6	1	Complete
3	Compare vendors	2	2	In Progress
4	Negotiate with vendors	3	3	Open
5	Develop communications information	4	1	In Progress
6	Disseminate information	2	5	Open
7	Create and administer survey	4	6	Open
7.1	Create initial survey	1		Open
7.2	Review initial survey	1	7.1	Open
7.2.1	Review by Director of IT Training	1		Open
7.2.2	Review by Project Sponsor	1		Open
7.2.3	Review by Representative Trainee	1		Open
7.3	Pilot test initial survey	1	7.1	Open
7.4	Incorporate survey changes	1	7.2, 7.3	Open
7.5	Create distribution list	0.5		Open
7.6	Send survey to distribution list	0.5	7.4, 7.5	Open
7.7	Send follow-up message	0.5	7.6	Open
7.8	Collect completed surveys	1	7.6	Open
8	Analyze results and choose vendor	2	4, 7	Open
9	Build new classrooms	11	1	In Progress
10	Develop course options	3	8, 9	Open

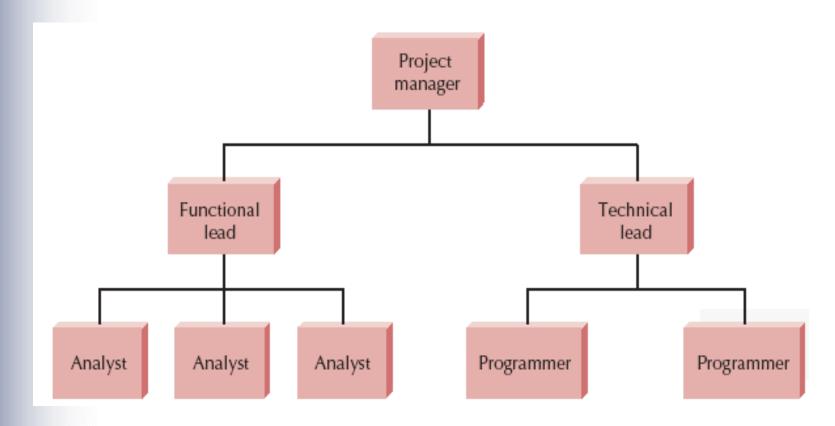
STAFFING THE PROJECT

Key Definitions

- The staffing plan describes the kinds of people working on the project
- The project charter describes the project's objectives and rules
- A functional lead manages a group of analysts
- A technical lead oversees progress of programmers and technical staff members

Motivation

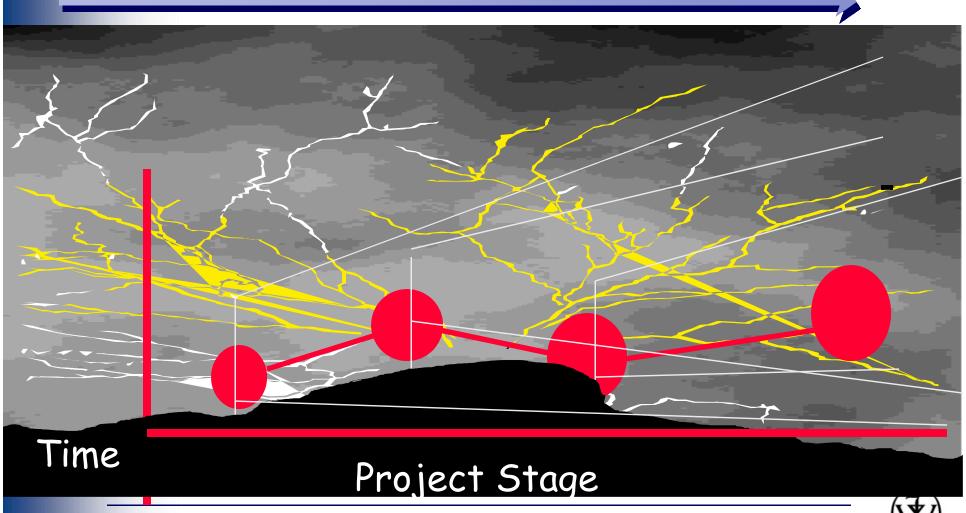
- Use monetary rewards cautiously
- Use intrinsic rewards
 - Recognition
 - Achievement
 - The work itself
 - Responsibility
 - Advancement
 - Chance to learn new skills



Conflict Avoidance Strategies

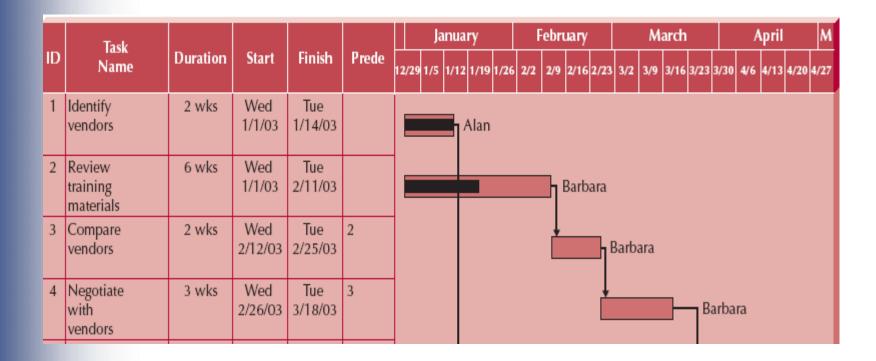
- Clearly define roles and project plans
- Hold individuals accountable
- Project charter listing norms and groundrules
- Develop schedule commitments ahead of time
- Forecast other priorities and their possible impact on the project

Possible Reporting Structure



CONTROLLING AND DIRECTING THE PROJECT

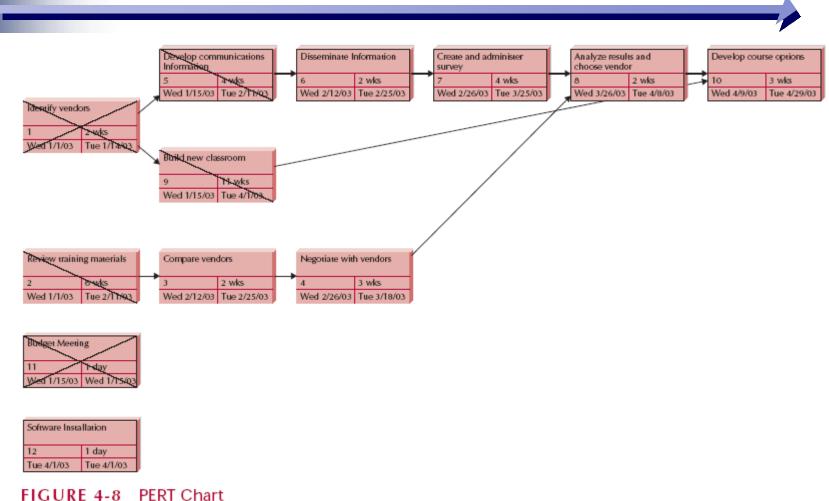
The Hurricane Model



Margins of Error in Cost and Time Estimates

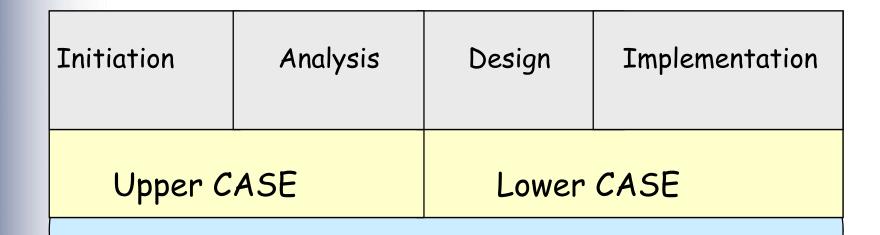
		Typical margins of Error for Well-done Estimates	
Phase	Deliverable	Cost (%)	time (%)
Planning	System Request Project Plan	400 100	60 25
Analysis	System Proposal	50	15
Design	System Specification	25	10
Source: Boehm et al. (1995)			

Gantt Chart

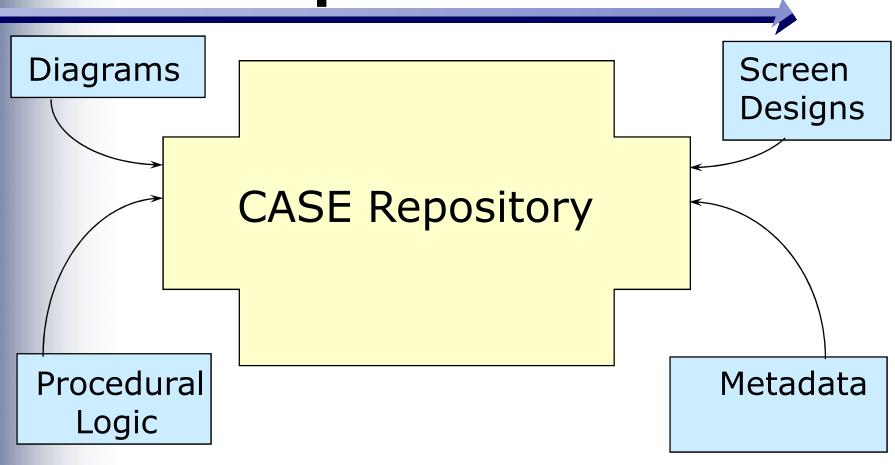


PERT Charts

- Project Evaluation and Review Technique (PERT)
- PERT uses three time stimates:
 - Optimistic, O
 - Most likely, M
 - Pessimistic, P
- Time Estimate = 0 + 4 * M + P



Pert Chart


CASE Tools

Integrated CASE (I-CASE)

CASE Components

Standards

- Formal rules for naming files
- Forms indicating goals reached
- Programming guidelines
 - Can you think of more examples?

Documentation

- Project binder
- Table of contents
- Continual updating

Managing Scope

- Scope creep -- a major cause of development problems
 - JAD and prototyping
 - Formal change approval
 - Charging for changes

Timeboxing

- Fixed deadline
 - Make deadline possible
 - Set by development group
- Reduced functionality, if necessary
- Fewer "finishing touches"

Timeboxing Steps

- Set the date for system delivery.
- Prioritize the functionality that needs to be included in the system.
- Build the core of the system (the functionality ranked as most important).
- Postpone functionality that cannot be provided within the time frame.
- 5. Deliver the system with core functionality.
- 6. Repeat steps 3 through 5, to add refinements and enhancements.

Managing Risk

- Risk assessment
- Actions to reduce risk
- Revised assessment

Classic Mistakes

- Overly optimistic schedule
- Failing to monitor schedule
- Failing to update schedule
- Adding people to a late project

Summary

- Project management is critical to successful development of new systems
- Project management involves planning, controlling and reporting on time, labor, and costs.

Expanding the Domain

- For more detail on project management, visit the project management institute and its special interest group on information systems:
 - www.pmi.org
 - www.pmi-issig.org

