Systems Analysis and Design with UML Version 2.0, Second Edition

Alan Dennis, Barbara Haley Wixom, and David Tegarden

Chapter 7: Structural Modeling

John Wiley & Sons, Inc. Copyright 2005

Copyright © 2005 John Wiley & Sons, Inc.

- All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the copyright owner is unlawful.
- Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.
- The purchaser may make back-up copies for his/her own use only and not for redistribution or resale.
- The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.

Structural Modeling

Chapter 7

Key Ideas

- A structural or conceptual model describes the structure of the data that supports the business processes in an organization..
- The structure of data used in the system is represented through *CRD* cards, class diagrams, and object diagrams.

STRUCTURAL MODELS

Purpose of Structural Models

- Reduce the "semantic gap" between the real world and the world of software
- Create a vocabulary for analysts and users
- Represent things, ideas, and concepts of importance in the application domain

Classes

- Templates for creating instances or objects
 - Concrete
 - Abstract
- Typical examples:
 - Application domain, user interface, data structure, file structure, operating environment, document, and multimedia classes

Attributes

- Units of information relevant to the description of the class
- Only attributes important to the task should be included

Operations

- Action that instances/objects can take
- Focus on relevant problemspecific operations (at this point)

Relationships

- Generalization
 - Enables inheritance of attributes and operations
- Aggregation
 - Relates parts to wholes
- Association
 - Miscellaneous relationships between classes

Your Turn

What classes, attributes, and operations that would be required to describe the process of registration for campus housing?

CLASS-RESPONSIBILITY-COLLABORATION CARDS

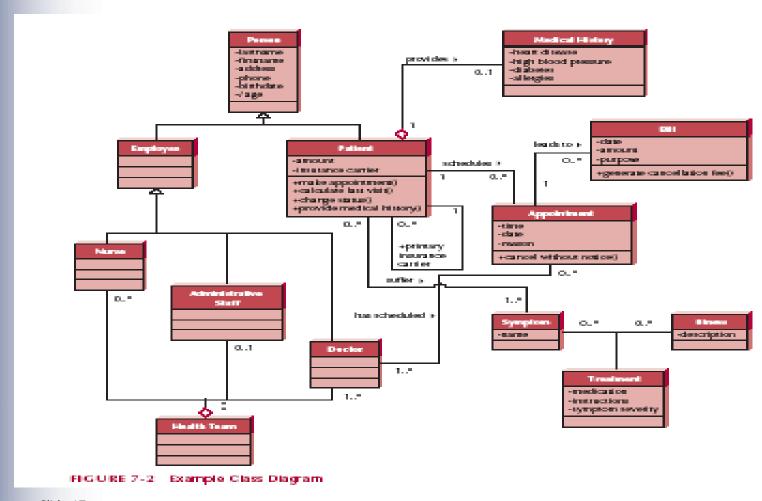
Responsibilities and Collaborations

- Responsibilities
 - Knowing
 - Doing
- Collaboration
 - Objects working together to service a request

A CRC Card

Class Name: Patient	ID: 3		Type: Concrete, Domain
Description: An Individual the medical attention		or has received	Associated Use Cases: 2
Responsibiliti	es		Collaborators
Make appointment		Appointment	
Calculate last visit			
Change status			
Provide medical history		Medical history	

Back of CRC Card


Attributes:	
Amount (double)	
Insurance carrier (text)	
Relationships:	
Generalization (a-kind-of):	Person
Aggregation (has-parts):	Medical History
Other Associations:	Appointment

CLASS DIAGRAMS

Example Class Diagram

Class Diagram Syntax

A CLASS	Class 1
	-attribute
	+operation ()
AN ATTRIBUTE	Attribute name/ derived attribute name
AN OPERATION	operation name ()
AN ASSOCIATION	1* 01 verb phrase

More on Attributes

- Derived attributes
 - /age, for example can be calculated from birth date and current date
- Visibility
 - Public
 - Protected
 - Private

More on Operations

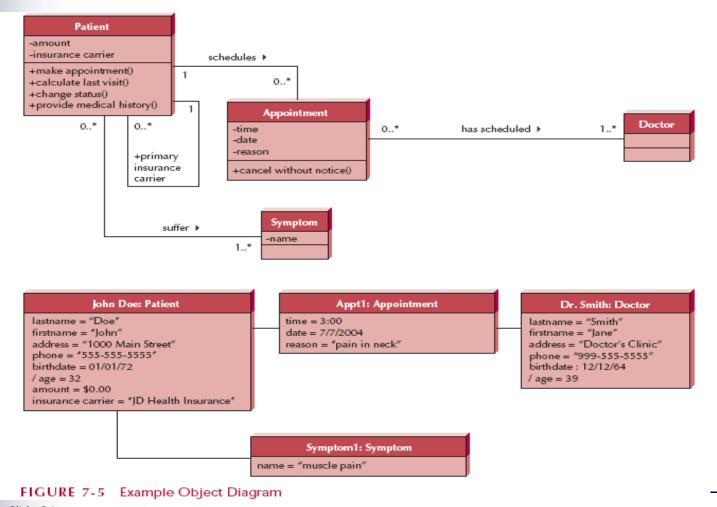
- Constructor
 - Creates object
- Query
 - Makes information about state available
- Update
 - Changes values of some or all attributes

Generalization and Aggregation

- Generalization shows that a subclass inherits from a superclass
 - Doctors, nurses, admin personnel are kinds of employees
- Aggregation classes comprise other classes
 - Health team class comprised of doctor, nurses, admin personnel classes

More on Relationships

- Class can be related to itself (role)
- Multiplicity
 - Exactly one, zero or more, one or more, zero or one, specified range, multiple disjoint ranges
- Association class



Simplifying Class Diagrams

- The view mechanism shows a subset of information
- Packages show aggregations of classes (or any elements in UML)

Object Diagrams

CREATING CRC CARDS AND CLASS DIAGRAMS

Object Identification

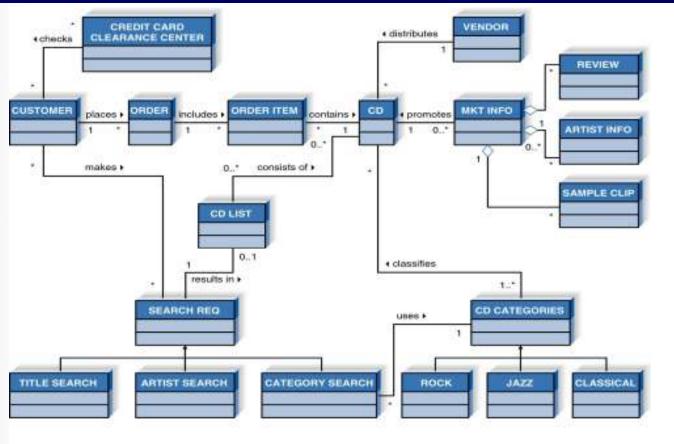
- Textual analysis of use-case information
 - Nouns suggest classes
 - Verbs suggest operations
- Creates a rough first cut
- Common object list
- Incidents
- Roles

Patterns

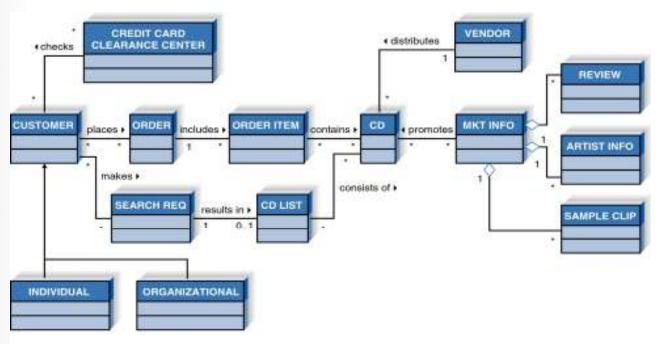
- Useful groupings of classes that recur in various situations
- Transactions
 - Transaction class
 - Transaction line item class
 - Item class
 - Location class
 - Participant class

Steps for Object Identification and Structural Modeling

- 1. Create CRC cards by performing textual analysis on the use-cases.
- 2. Brainstorm additional candidate classes, attributes, operations, and relationships by using the common object list approach.
- 3. Role-play each use-case using the CRC cards.
- 4. Create the class diagram based on the CRC cards.
- 5. Review the structural model for missing and/or unnecessary classes, attributes, operations, and relationships.
- 6. Incorporate useful patterns.
- 7. Review the structural model.



- Create CRC cards.
- Examine common object lists.
- Role-play the CRC cards.
- Create the class diagram.
- Review the class diagram.
- Incorporate patterns.
- Review the model.


CD Selections

Dennis: SAD Fig. 7-11 W-28 100% of size Fine Line Illustrations (516) 501-0400

CD Selections

Dennis: SAD Fig: 7-12 W-29 100% of size Fine Line Illustrations (516) 501-0400

Summary

- CRC cards capture the essential elements of a class.
- Class and object diagrams show the underlying structure of an object-oriented system.
- Constructing the structural model is an iterative process involving: textual analysis, brainstorming objects, role playing, creating the diagrams, and incorporating useful patterns.

Expanding the Domain

- A quirky and interesting tutorial regarding CRC cards can be found at:
- http://www.csc.calpoly.edu/~d butler/tutorials/winter96/crc_b/

