Systems Analysis and
Design with UML Version
2.0, Second Edition

_—m—

Alan Dennis, Barbara Haley Wixom, and
David Tegarden

Chapter 10: Class and Method Design
John Wiley & Sons, Inc.
Copyright 2005

Slide 1 @

WILEY

Copyright © 2005
John Wiley & Sons, Inc.

« All rights reserved. Reproduction or translation of this
work beyond that permitted in Section 117 of the 1976
United States Copyright Act without the express written
permission of the copyright owner is unlawful.

Request for further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

. The purchaser may make back-up copies for his/her own
use only and not for redistribution or resale.

» The Publisher assumes no responsibility for errors,
omissions, or damages, caused by the use of these
programs or from the use of the information contained
herein.

Slide 2 @

WILEY

WILEY

REVISITING THE BASIC
CHARACTERISTICS OF
OBJECT-ORIENTATION

Slide 3

Bl Ao b et ol ot o A e A e A e et A ol et e o At e A s et e e ot e A

evels of Abstraction

Objects

. Attributes
. States
Methods
Messages

Slide 5 @

WILEY

. Hiding the content of the object
- from outside view

. Communication only through
-~ object’s methods

. Key to reusability

Slide 6

WILEY

Polymorphism

, Same message triggers different
methods in different objects

, Dynamic binding means specific method
is selected at run time

, Implementation of dynamic binding is
language specific

. Need to be very careful about run time
errors

. Need to ensure semantic consistency

Slide 7 @

WILEY

Inherita nce

. Single inheritance -- one parent
class

. Multiple inheritance -- multiple
parent classes

. Redefinition and inheritance conflict

. Most inheritance conflicts are due to
poor classification

Slide 8 @

WILEY

Rumbaugh’s Rules

Query operations should not be redefined

Methods that redefine inherited ones should only restrict
the semantics of the inherited ones

The underlying semantics of the inherited method should
never be changed

The signhature (argument list) of the inherited method should
never be changed

Slide 9

WILEY

Additional Inheritance
Conflicts

Two inherited attributes or
methods have same name and
semantics

Two inherited attributes or
methods have different name, but
same semantics

Two inherited attributes or
methods have same name and
different semantics

Slide 10 @

WILEY

H
H

%Inheritance Conflicts with
Multiple Inheritance

-name
-classification -type
-runningTime -runningTime

[]

Robot-Employee

Slide 11
WILEY

Design Criteria

Chapter 10

 Slide 12 @

WILEY

Indicates the interdependence
- or interrelationships of the
~ modules

Interaction coupling

. Relationships with methods and
objects through message passage

Slide 13 @

WILEY

Cood

No Direct Coupling

Description

The methods do not relate to one another; that is, they do
not call one another.

Data

The calling method passes a variable to the called method.
If the variable is composite, (i.e., an object), the entire
object is used by the called method to perform its function.

Stamp

The calling method passes a composite variable (i.e., an
object) to the called method, but the called method only
uses a portion of the object to perform its function.

Control

The calling method passes a control variable whose value
will control the execution of the called method.

Common or Global

The methods refer to a “global data area” that is outside the
individual objects.

Bad

Content or Pathological

A method of one object refers to the inside (hidden parts) of
another object. This violates the principles of encapsulation
and information hiding. However, C++ allows this to take
place through the use of “friends.”

Slide 14

WILEY

pes of Method Cohesion

Type Description

Functional Acomethod performs a single problem-related task (e.g.,
Calculate current GPA).

Sequential The method combines two functions in which the output
from the first one is used as the input to the second one
(e.g.. format and validate current GPA).

Communicational The method combines two functions that use the same
attributes to execute (e.g., calculate current and
cumulative CGPA).

Frocedural The method supports multiple weakly related functions. For
example, the method could calculate student GPA, print
student record, calculate cumulative GPA, and print
cumulative GPA.

Temporal or Classical The method supports multiple related functions in time
(e.g., initialize all attributes).

Logical The method supports multiple related functions, but the
choice of the specific function is chosen based on a control
wvariable that is passed into the method. For example, the
called method could open a checking account, open a sav-
ings account, or calculate a loan, depending on the message
that is send by its calling method.

Coincidental The purpose of the method cannot be defined or it performs
multiple functions that are unrelated to one another. For
example, the method could update customer records, calcu-
late loan payments, print exception reports, and analyze
competitor pricing structure.

Slide 15
WILEY

T e e e S g gt S U g e S A S e

Ideal Class Cohesion

’
. Contain multiple methods that
. are visible outside the class

. Have methods that refer to
- attributes or other methods
. defined with the class or its
. superclass

. Not have any control-flow
. coupling between its methods

Slide 16 @

WILEY

Cood

vpes of Class Cohesion

lcleal

Description

The class has none of the mixed cohesions.

Mixed-Role

The class has one or more attributes that relate objects of
the class to other objects on the same layer (e.g., the
problem domain layer, but the attribute(s) have nothing to
do with the underlying semantics of the class.

Mixed-Domain

The class has one or more attributes that relate objects of
the class to other objects on a different layer. As such,

they have nothing to do with the underlying semantics of
the thing that the class represents. In these cases, the
offending attribute(s) belongs in another class located on
one of the other layers. For example, a port attribute located
in a problem domain class should be in a system architec-
ture class that is related to the problem domain class.

Worse

Mixed-Instance

The class represents two different types of objects. The class
should be decomposed into two separate classes. Typically,

different instances only use a portion of the full definition of
the class.

Slide 17

WILEY

Connascence

. Two modules (classes or

. methods) are so intertwined,

- that if you make a change in

. one, it is likely that a change in
. the other will be required

WILEY

Connascence and
Encapsulation Levels

. Minimize overall connascence by
eliminating anK unnecessary
connascence throughout the
system,

. Minimize connascence across any
encapsulation boundaries, such as
method boundaries and class
boundaries,

. Maximize connascence within any
encapsulation boundary.

Slide 19 @

WILEY

Object Design Activities

~ Slide20

S

MName

vpes of Connascence

Description

If a method refers to an attribute, it is tied to the name of the atiribute. If the
attribute’s name changes, the content of the method will have to change.

Type or Class

If a class has an attribute of type A, it is tied to the type of the attribute. If the type
of the attribute changes, the attribute declaration will have to change.

Convention

A class has an attribute in which a range of values has a semantic meaning (e.g.,
account numbers whose values range from 1000 to 1999 are assets). If the range
would change, then every method that used the attribute would have

to be modified.

Algorithm

Two different methods of a class are dependent on the same algorithm to
execute correctly (e.g., insert an element into an array and find an element in
the same array). If the underlying algorithm would change, then the insert and

find methods would also have to change.

Position

The order of the code in a method or the order of the arguments to a method is
critical for the method to execute correctly. If either is wrong, then the method
will, at least, not function correctly.

Source: Page-lones, “Comparing Techniques by Means of Encapsulation and Connascence” and Page-|ones,
Fundamentals of Object-Oriented Design in LML

Slide 21

WILEY

Additional Specification

. Ensure the classes are both
necessary and sufficient for the
problem

. Finalize the visibility of the
alttributes and methods of each
class

. Determine the signature of every
method of each class

. Define constraints to be preserved
by objects

Slide 22 @

WILEY

. Analysis patterns
. Design patterns
Frameworks

. Libraries
., components

Slide 23 @

WILEY

Sample Design Pattern

sendMs InterProcessCommunication - receives
2 +marshal() +receivel] ¥
+deliveri) +unmarshali)
+sendMsg() +receiveMsg()
1 1
+service() | 1 +service)
- InterProcessCommunication
. +receive() +marshal()

recelveMsg +unmarshall +deliver]) sendMsg

+receiveMsgl) +sendMsgl)
Slide 24 @

WILEY

Restructuring the Design

. Factoring

. Separate aspects of a method or class
into a new method or class

. Normalization

. Identifies classes missing from the
design
. Challenge inheritance relationships
to ensure they only support a
generalization/specialization
semantics @

Slide 25

WILEY

Optimizing the Design

. Review access paths between
objects

. Review each attribute of each
class

. Review fan-out of each method

. Examine execution order of
statements

. Create derived activities

WILEY

;Map Problem Domain Classes
to Implementation Languages

Slngle -Inheritance Language
- Convert relationships to

association relationships

. Flatten inheritance hierarchy by

copying attributes and methods of
additional superclass(es)

Slide 27

W

WILEY

. Factor out all uses of
- inheritance from the problem
- domain class design

Slide 28 @

WILEY

Your Turn

. Dentist office appointment system

. Assume that you now know that the
system must be implemented in Visual
Basic 6, which does not support
implementation inheritance.

. As such, redraw the class diagram
factoring out the use of inheritance in
the design by applying the above
rules.

Slide 29 @

WILEY

Implement in a Traditional
Language

. Stay away from this!

. But if necessary, factor out all
uses of

- Polymorphism

. Dynamic binding

. Encapsulation

- Information hiding

Slide 30 @

WILEY

Constraints and Contracts

WILEY

Types of Constraints

. Pre-Conditions

. A constraint to be met to allow a
method to execute

. Post-condition

. A constraint to be met after a method
executes

. Invariants

. Constraints that must be true for all
instances of a class

Slide 32 @

WILEY

H
H
i
H
I
;-
I
i
I
K
i
H
I
-
I
H
o
K
i
;-
-

-Cust 1D
-Last MName

-First Name 1..1

-Order Number @ unsigned long
-Date[1..] : Date

-Sub Total[0..1] : double
-Tax[D..1] : double
-Shipping[0..1] : double
-Total[0..1] : doubla
-Tax[D..1] : double
~Customer[1..1] : Customer
SCust ID[1..1] : unsigned long
-State[1..1] : State

—Sta::e MName[1..1] : String

Ed

Product Order

Oirder
Product
Qty

Extension

1..% -Product Mumber

o.*
=< imvariants=

ICust 1D = Customer.GetCustIDi)}
1.1

<< inwvariant==

{State MName = State.CetState()}
-State
-TaxRate

FIGURE 10-12 Invariants on a Class Diagram

-Product Desc
-Price

<<invariant==
Sub Total =SumiProduct Order. GetExtension())}

=< inwvariants=
{Tax =5State.GetTaxRate)*SubTotal}

Slide 33

PR

WILEY

lements of a Contract

Method Name: Class Mame: D

Clients iConsumers):

Associated Use Cases:

Description of Responsibilities:

Arguments Received:

Type of Value Returned:

Pre-Conditions:

Post-Conditions:

Slide 34

WILEY

Your Turn

. Using the CRC card in Figure

~ 10-11, the class diagram in

. Figure 10-12, and the sample

. contract format in Figure 10-13
- as guides, create contracts for

- the Calculate subtotal, Calculate
- tax, Calculate shipping, and

- Calculate total methods.

Slide 35 @

WILEY

Method Specification

WILEY

Method Specification

General information
Events

Message passing

. Algorithm specification
. . Structured English

. Pseudocode
- UML activity diagram

Slide 37 @

WILEY

Applying the Concepts at CD
- Selections

WILEY

Rewsed CD Selections Class

i chacks N Clearance Center 4 distributes

contains ¥

Includes ¥

makes ¥ consists of promoies b

results in ¥
ar 1.1 0.1 0.* 1.1

Organizational

FIGURE 10-17 Revised CD Selections Internet Sales System Class Diagram (Places Order Use Case View)

Slide 39

ack of CD CRC Card

Back:
Attributes:
CD Mumber (1..1) (unsigned long)
CD Mame (1.11 (String)
Pub Date (1.1) (Cate)

HArtist Marme (1.1} (Strng)
Artist Mumber (1.1} (unsigned long)

WVendor (1.1} (Vendar)
Vendor D (1..1) (unsignedlong) {Vendor [0 = Vendor.GetVendorID{) }
Relationships:

Generalization (a-kimd-of):

Aggregation (has-parts):

Other Assocations: Order Itemn 0%} CD List {0.*} Vendor {1..1} Mkt Info {01}

Slide 40
WILEY

et Review Method Contract

Method Mame: GetReview(] Class N ame: |H

Clients (Consumers): TD Detailed Report

Associated Llse Cases:

Places Cirder

Drescription of Responsibilities:
Eeturn review obijects for the Detailed BEeport Screen to display

Arguments Received:

Type of YValue Returned:
List of Beview objects

Pre-Conditions:
Renvdew attribute not Mull

Post-Conditions:

Slide 41

WILEY

Revised Package Diagram

Artist Info

Sample Clip

Slide 42 @

WILEY

111

